Vertex-pancyclicity of hypertournaments

نویسنده

  • Jed Yang
چکیده

Abstract: A hypertournament or a k-tournament, on n vertices, 2≤k≤n, is a pair T= (V,E), where the vertex setV is a set of size n and the edge setE is the collection of all possible subsets of size k of V, called the edges, each taken in one of its k! possible permutations. A k-tournament is pancyclic if there exists (directed) cycles of all possible lengths; it is vertex-pancyclic if moreover the cycles can be found through any vertex. A k-tournament is strong if there is a path from u to v for each pair of distinct vertices u and v. A question posed by Gutin and Yeo about the characterization of pancyclic and vertex-pancyclic hypertournaments is examined in this article.We extendMoon's Theorem for tournaments to hypertournaments. We prove that if k≥8 and n≥k+3, then a k-tournament on n vertices is vertex-pancyclic if and only if it is strong. Similar results hold for other values of k. We also show that when n≥7, k≥4, and n≥k+2, a strong k-tournament on n vertices is pancyclic if and only if it is strong. The bound n≥k+2 is tight. We also find bounds for the generalized problem when we extend vertex-pancyclicity to require d edge-disjoint cycles of each

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the scores and degrees in hypertournaments

A k-hypertournament H = (V,A), where V is the vertex set and A is an arc set, is a complete k-hypergraph with each k-edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the edge. In a k-hypertournament, the score si(losing score ri) of a vertex is the number of edges containing vi in which vi is not the last element(in which vi is the last element) and t...

متن کامل

Preprint SCORES , INEQUALITIES AND REGULAR HYPERTOURNAMENTS

Abstract. A k -hypertournament is a complete k -hypergraph with each k -edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the edge. In a k hypertournament, the score si (losing score ri ) of a vertex vi is the number of edges containing vi in which vi is not the last element (in which vi is the last element). In this paper we obtain inequalities involv...

متن کامل

Pancyclic out-arcs of a vertex in a hypertournament

A k-hypertournament H on n vertices, where 2 ≤ k ≤ n, is a pair H = (V,AH), where V is the vertex set of H and AH is a set of k-tuples of vertices, called arcs, such that for all subsets S ⊆ V of order k, AH contains exactly one permutation of S as an arc. Inspired by the successful extension of classical results for tournaments (i.e. 2-hypertournaments) to hypertournaments, by Gutin and Yeo [J...

متن کامل

Pancyclicity when each cycle must pass exactly k Hamilton cycle chords

It is known that Θ(log n) chords must be added to an n-cycle to produce a pancyclic graph; for vertex pancyclicity, where every vertex belongs to a cycle of every length, Θ(n) chords are required. A possibly ‘intermediate’ variation is the following: given k, 1 ≤ k ≤ n, how many chords must be added to ensure that there exist cycles of every possible length each of which passes exactly k chords...

متن کامل

On scores, losing scores and total scores in hypertournaments

A k-hypertournament is a complete k-hypergraph with each k-edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the edge. In a k-hypertournament, the score si (losing score ri) of a vertex vi is the number of arcs containing vi in which vi is not the last element (in which vi is the last element). The total score of vi is defined as ti = si − ri. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2010